

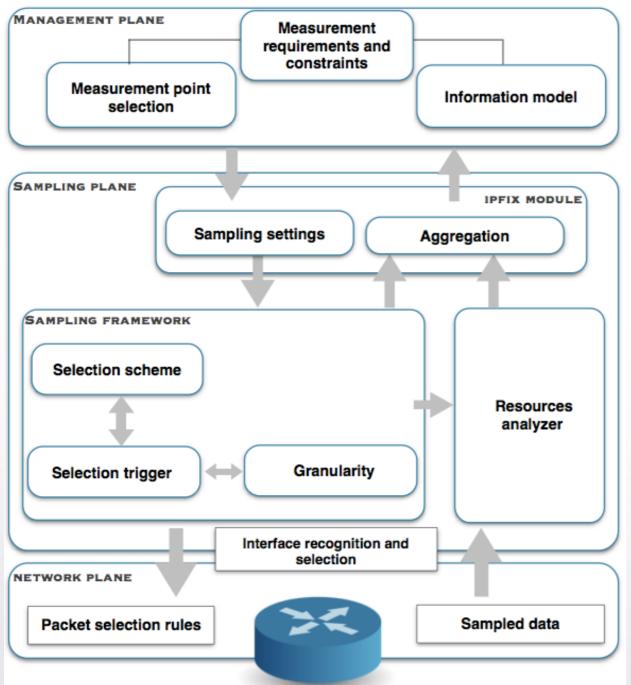
A modular architecture for deploying self-adaptive traffic sampling

João Marco C. Silva Paulo M. Carvalho Solange Rito Lima

Introduction

- Traffic sampling plays a key role to achieve efficient network measurements
 - to select a subset of packets which will be used to estimate network parameters, avoiding processing all network traffic
- Many sampling techniques have been proposed, but not deployed in measurement points

Introduction


- Main issue: the balance between computational burden and accuracy
 - Memory and CPU usage
 - Volume of data stored and transmitted
 - Accuracy in metric estimations

Objective

 To deploy a modular and self-adaptive architecture able to accommodate the selection and configuration of sampling techniques according to the requirements of accuracy and resources available

Measurement architecture

- Three layers design
 - Management plane
 - Sampling plane
 - Network plane
- Modular components
 - scalability

A modular architecture for deploying self-adaptive traffic sampling

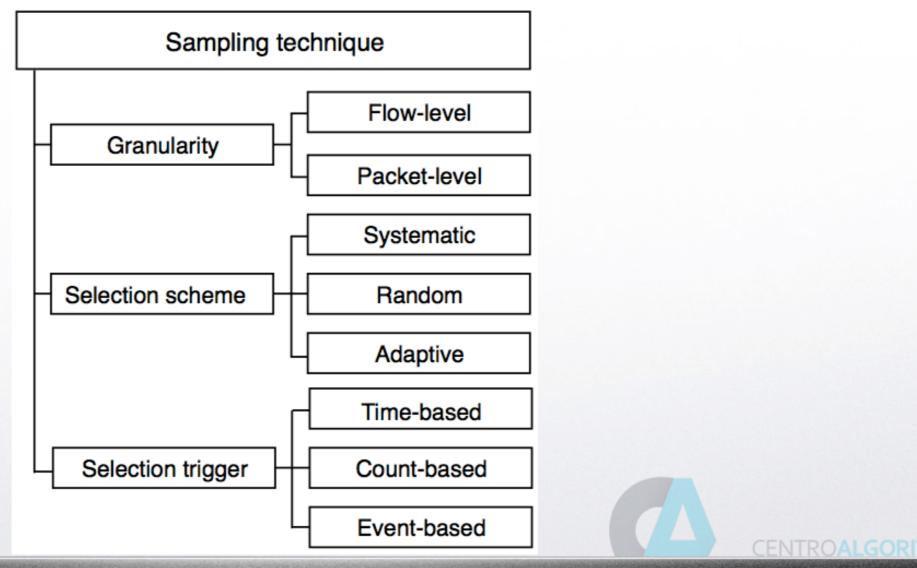
Measurement architecture

MANAGEMENT PLANE Measurement point selection	ts and
SAMPLING PLANE Sampling settings	IPFIX MODULE Aggregation
SAMPLING FRAMEWORK Selection scheme Selection trigger Granula	Resources analyzer
NETWORK PLANE	ition and
Packet selection rules	Sampled data

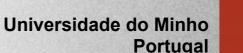
- Management plane
 - measurement needs and constraints identification
 - Sampling technique selection and configuration
 - Self-adaptive behavior

Measurement architecture

MANAGEMENT PLANE Measurement point selection	Measurement requirements and constraints	Information model
	oling settings	IPFIX MODULE Aggregation
SAMPLING FRAMEWORK Selection scheme Selection trigger	Granularity	Resources analyzer
NETWORK PLANE	Interface recognition and selection	
Packet selection rules	35	Sampled data


• Sampling plane

- modular sampling framework
- resources analyzer
- aggregation and exporting
 - IETF IPFIX



Measurement architecture

• Sampling plane - framework

A modular architecture for deploying self-adaptive traffic sampling

Measurement architecture

MANAGEMENT PLANE Measurement point selection	Measurement requirements and constraints	Information model
	pling settings	IPFIX MODULE Aggregation
SAMPLING FRAMEWORK Selection scheme Selection trigger	Granularity	Resources analyzer
NETWORK PLANE	Interface recognition and selection	
Packet selection rules	24	Sampled data

- Network plane
 - simple tasks
 - traffic capture from network interface
 - reporting unprocessed collected packets

Ongoing works

- Deployment of the sampling plane and network plane
- Quantitative comparison of the computational burden / accuracy of different sampling techniques
 - in presence of similar workload
 - to support the design of an efficient adaptive module

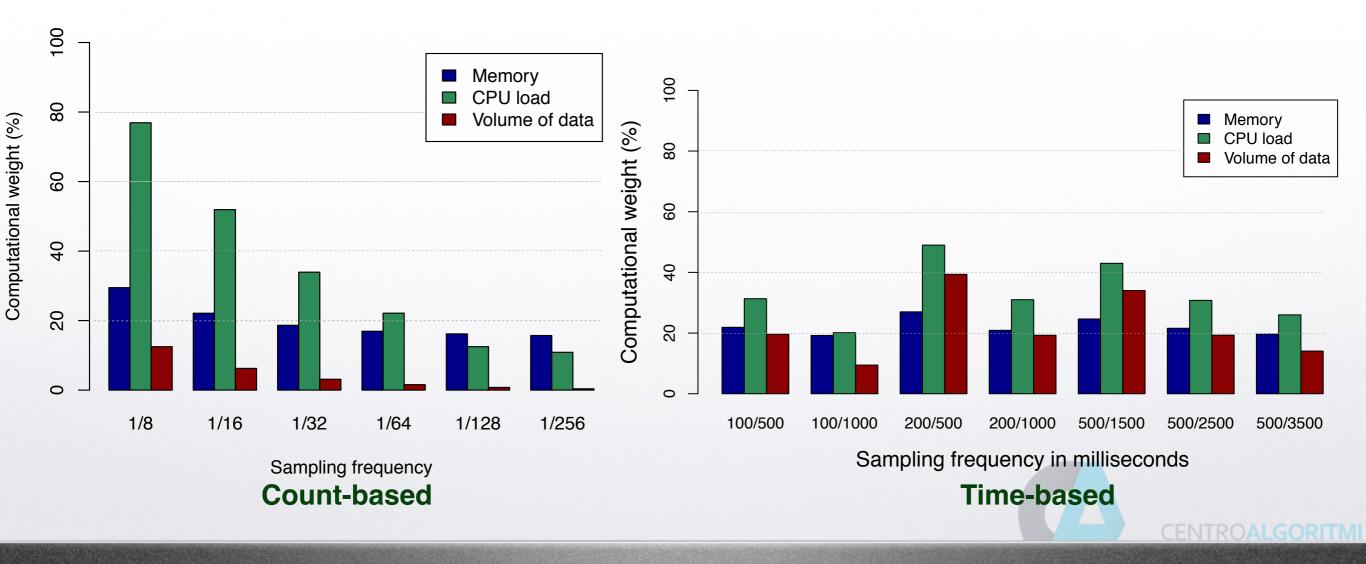
Portugal

Universidade do Minho

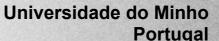
Ongoing works

- Sampling techniques analyzed
 - Systematic count-based (SystC)
 - Systematic time-based (SystT)
 - Random count-based (RandC)
 - Adaptive linear prediction (LP)
 - Multiadaptive (MuST)

Ongoing works

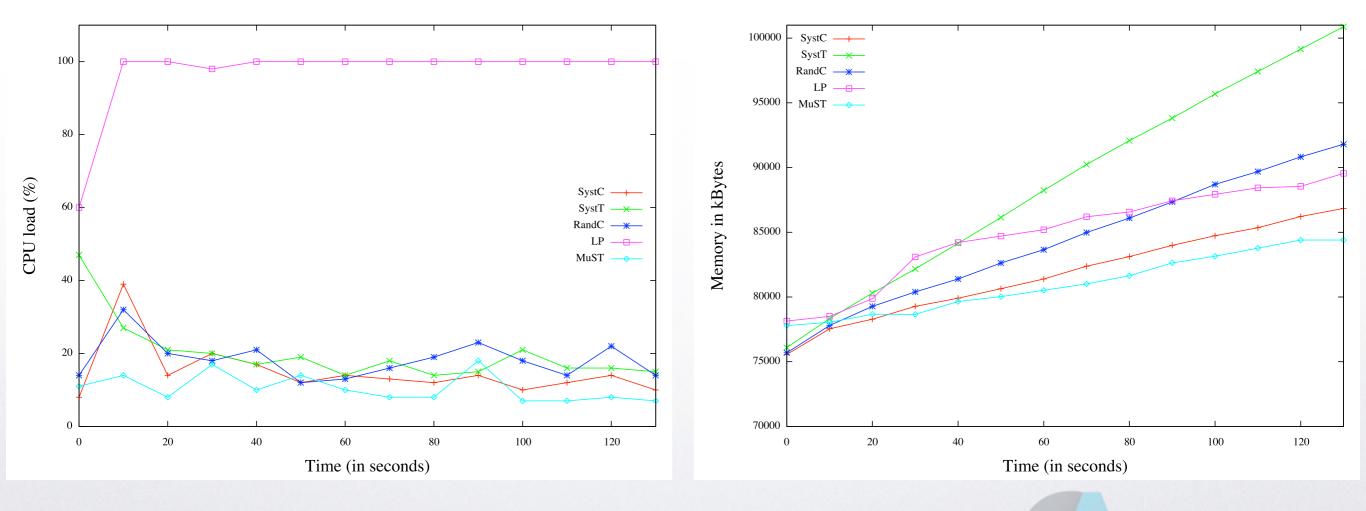

- Comparative parameters
 - Computational weight
 - CPU load, memory usage and volume of data
 - Accuracy
 - instantaneous throughput, mean throughput, mean packet size
 - resorting to descriptive statistics

A modular architecture for deploying self-adaptive traffic sampling



Early results

• Systematic techniques - high workload scenario

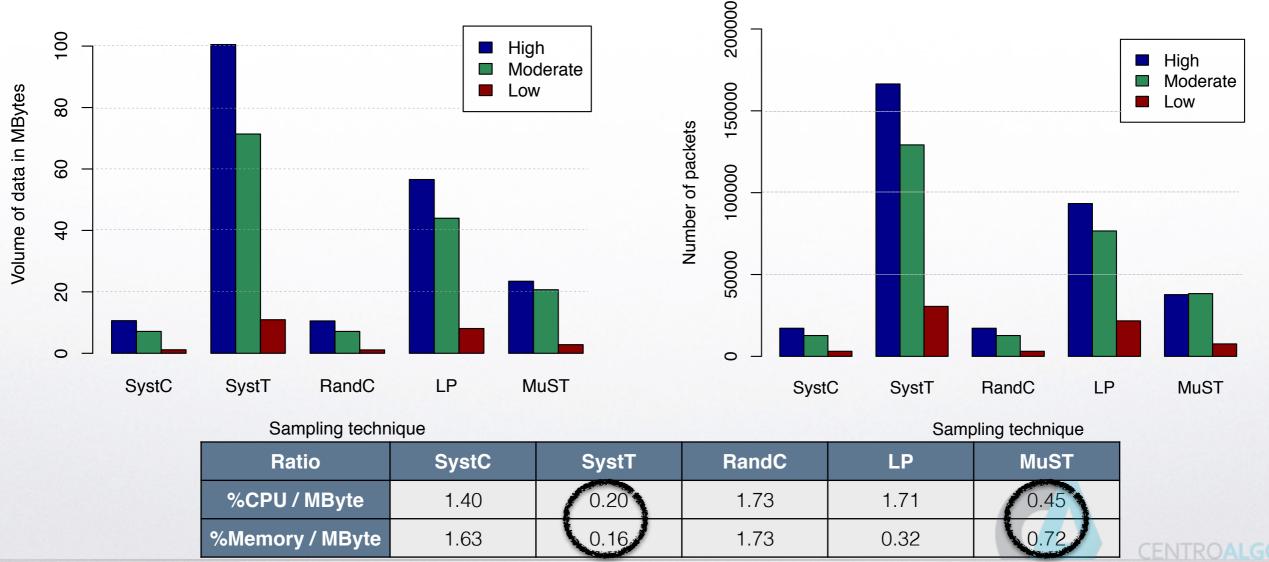

A modular architecture for deploying self-adaptive traffic sampling

Early results

• Computational weight - high workload scenario

A modular architecture for deploying self-adaptive traffic sampling

Early results


• Computational weight - all traffic scenarios

Parameter		SystC	SystT	RandC	LP	MuST
CPU load (%)	Low workload	5.03	14.55	5.50	27.35	8.82
Memory (kBytes)	Low we	76566	95900	81222	82440	85295
CPU load (%)	Moderate workload	10.80	17.95	16.86	96.68	10.72
Memory (kBytes)	Moderate	80773	96410	(84042)	87698	84371
CPU load (%)	High workload	14.92	20.12	18.26	97.27	10.76
Memory (kBytes)	High w	81801	90754	86163	85551	80765

Early results

• Volume of data - all traffic scenarios

A modular architecture for deploying self-adaptive traffic sampling

Early results Accuracy

Parameter		Total	SystC	SystT	RandC	LP	MuST
Mean throughput (Mbps) / MRE	Low workload	3.90	3.72/0.04		~9:00/0:05 ~	385/001	3.81 / 0.02
Mean pkt size (Bytes)		377.58	387.87	375.65	371.39	390.32	386.70
Peak-to-average	Low	4.00	3.90	4.03	4.07	3.87	3.91
Mean throughput (Mbps) / MRE	rkload	26.65	25.40 / 0.04	25.08 / 0.05	23.73/0.11	25.51 / 0.04	25.44 / 0.04
Mean pkt size (Bytes)	Moderate workload	587.26	586.90	579.42	586.53	589.38	587.82
Peak-to-average		2.57	2.57	2.61	2.58	2.56	2.57
Mean throughput (Mbps) / MRE	High workload	68.79	65.54 / 0.04	64.06 / 0.06	65.05 / 0.05	64.28 / 0.06	68.47 / 0.004
Mean pkt size (Bytes)		648.59	647.95	633.33	643.15	635.49	652.36
Peak-to-average		2.33	2.33	2.39	2.35	2.38	2.32

A modular architecture for deploying self-adaptive traffic sampling

Conclusions

- Preliminary results evince the relevance of tuning traffic sampling in order to meet distinct measurement needs and constraints
- Despite the extensive deployment of countbased techniques, the time-based approach achieves a better tradeoff volume of data / computational resources usage

Future work

- Deploy the adaptive controller module
 - reactive
 - threshold driven
 - fuzzy logic driven
 - proactive
 - linear prediction
 - nonlinear prediction

A modular architecture for deploying self-adaptive traffic sampling

João Marco C. Silva Paulo M. Carvalho Solange Rito Lima

